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.

IAmNAR EwNRARY LAYER ~ S130CJSADVANCING IIiZOSJXITOIJARYFLUID

By Harold Mirels

A study was made of the lsminar compressible boundary layer induced
by a shock wave advancing into a stationary fluid bounded by a wall. For
week shock waves, the boundary layer is identical with that which occurs
when an infinite wall is impulsively set into uniform motion (R~leigh
problem). A numerical solution was required for strong shocks.

Velocity and temperature profiles, recovery factors, and skin-
friction and heat-transfer coefficients are tabulated for a wide range of
shock strengths.

IN’ITUXJCTION

H a shock wave advances into a stationary fluid bounded by a WSU,
a boundary-layer flow is established along the wall behind the shock.
!J3rLsboundary layer is often important in studies of phenomena involving
nonstationsry shock waves. In a shock tube, for example, this boundary
layer acts to attenuate the strength of the shock which propagates through
the low-pressure side of the tube (refs. 1 and 2). lf the shock tube iS

used as an aerodynamic wind tunnel, the test ti~ available may depend,
for long shock tubes, on the time it takes the boundary layer to introduce
nonuniformities in the test section.

Another example of a shock-generated boundary layer occurs when a
couibustiblemixture is ignited within a tube. In this case, a shock wave,
followed by a flame front, is observed, as discussed in references 3 to
5. The shock wave is particularly strong when ignition occurs at a closed
end. For long tubes, the progress of the flame front will be related to
the boundary--r development behind the shock. Since flame speed is in-
creased by fluid turbulence, a transition from lsminsr to turbulent flow
will accelerate the fhne. Thus, the boun~ ~er ~ play a role in
the acceleration of a low-speed flsme to a detonation wave in a Long tube
(ref. 4).
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The boundary layer behind
2. Both papers were primarily
In reference 1, an approximate
mated by referring to the flow

the shock was studied in references 1 and
concerned with shock-wave attenuation.
solution for the %oundary layer was esti-
induced wit~n a circulsr cylinder that

is impui.sivelyse; into uniform translation. The valAdity-of this anaL-
ogy was not established. In reference 2, the correct boundary-lqjer equa-
tions were considered. !15esewere integrated with a REM [Reeves Elec-
tronic Analog Computer). Values of skin-friction and heat-transfer coef-
ficients were presented. However, no velocity or temperature profiles
were reported. Because of the gruwing interest in phenomena related to
these shock-inducedboundary layers, it was felt that a more detailed
and more accurate study of this boundary-layer problem was warranted.
Such a study was conducted at the NACA Lewis laboratory and the results

are presented herein.1

In the following sections, the lsminar compressible boundary layer
behind a shock wave advancing into a stationary fluid, bounded by a wall,
is analyzed. For weak shocks, an analytical perturbation solution is pre-
sented. Numerical results for velocity and temperature profiles and heat-
transfer and skin-friction coefficients are tabulated, covering the range
from weak to strong shocks. The numerical results are correct to four
decimal places.

ANALYSIS

Coordinate Systems

A shock wave of constant strength is considered to umve, parallel
to a wall, into a stationary fluid. Let ~,~ be a coordinate system
fixed in_respect_to the wa31 and let ~ “and T be velocities parallel
to the x and y coordinates, respectively, as indicated in figure l(a).
The flow is unsteady in this coordinate system. Let (xjy) represent a
coordinate system moving with the shock wave (fig. l(b)). The Velocities
parallel to the x and y coordinates are denoted by u and v. In
this coordinate system, the flow is steady.

Assumethat, at time t = O, the two coordinate systems coincide.
If G6 is the velocity of the shock wave relative to the WSXL, then ~

and x em related by x = ~ - fiEt. Similsrly, the sxisl velocities sxe

related by u = V - iis. Note that the wall moves with velocity ~ = -=8

in the steady coordinate system.

%& writer’s present interest in tbe shock-inducedbount@y-layer
problem was stimulated by a private conmiunicationfrom ~of. N. Rott of
Cornell University, who is studying heat-transfer problems associated
with shock tubes.

.
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Boundsry-Layer Equations

The Frandtl boundsry-lsyer equations apply for the flow in the ticin-
ity of the wall (except at the base of the shock, where the kmuxbry-layer
assumptions break down). Mating the flow to be laminsr and dp/dx = O,
the

The
for

—
equations of motion are, for ‘x

bpu + bpv = O
F~

-.
> 0,

.

(continuity)

P = pRT (state)
)

additional symbols are defined in appendix A. The boundary conditions
x>o me

V(x,o) = o T(x,c-)= Te
}

T(x,O) = ~

(2)

These exe the usual Imundary conditi~ns, except that the fluid at the wall
moves with velocity u (X, O) s ~ = -us in order to satisfy the condition

of zero slip at the wall. It till be assumed that_the wall temperature
~ is constant. The magnitudes of ~, Te) and Ua depend on the shock

strength and can be found from the normal shock relations quoted in ap-
pendix B. The ratio UJue increases from a value of 1 for a very weak

shock to a value of (T + 1)/(y - 1) for a very strong shock wave. Thus,
in the steady coordinate system, the u velocities in the boundary layer
have a maximum at the wall and decrease monotonically to the value in the
free stream (as indicated in fig. l(b)).

Transformation. - Equations (1) and (2) are transformed to a system
of ordinary differential equations with the methods of references 6 and 7.

From the continuity equation, a stream function $ exists such that
b$~y = pu/pw, -~px = pv/~. Fo~cwL~ reference 6, a ~i~~it~ par_-

ter q is defined according to the relation
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and the stream function is written as

* = p= f(q)

Note that f‘ = u/ue. As in reference 7, the viscosity is

linearly with temperature. If the viscosity is referenced
value,

()
P=$T

w

(3)

.

.

(4)

assmed to vary

to the wall.

(5)

Substitution of equations (3), (4), and (5) into the momentum equa-
tion yields

flll+ffif=o (6)

with the boundary conditions

f(o) = o
1

f ‘(0) = uJue

}

(7)

.

w

f’(.=)=lj

Equation (6) is the familiar Blasius differential equation. However, the
tangential velocity boun~ condition at the well {f’(O) = L#~) iS dif -

ferent from the zero value usually encountered in studies of viscous flow
past a semi-infinite plate. Numerical intention is required except for
the limiting case of a weak shock, [(uw/ue) - II CZ1, for whichan
analytical perturbation solution is possible.

For T a function of ~ only, the energy equation

assuming that the l?randtlnumber rY is const=t. Since
lium, the gener~ solution for T can be ewressed as
position of the solution for zero heat transfer plus the
transfer. That is, T/Te can be ~ressed in the form

becomes

(8)

equation [8} is
●

the linear super-
effect of heat .



NACA TN 3401

(9)

where r(~) satisfies

and

. Note

flow

r“ + u frt =
-Za

~ (f”)z

()]

uwl—-
‘e

s(~] satisfies

s“ +Cffs!=o

s(o)=
}

lj s(-) =0

“(lo)

(u)

l= I/a is the .ach number of the externalthat @#e) - 1] ~ E e e

relative to the waU.
, s (In eq. (9)) equals zero,

For an insulated wall, the coefficient of
so that the wall temperature is

Ttw,
Te = 1++[(~-) .e12r(0)

Thus, r(0) is a recovery factor based on the
flow relative to the wall. Equation (9), in

4

Mach number of the external
termsof T iS

W,i’

Equatione (10) and (U) can be expressed in quadrature form

(12a)

(13)

.
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For u = 1, these equations can be integrated to yield

%2

u

—-ft

‘e

%1—-
e

-1‘=~—.
u
e

NACA TN 3401

(14)

The solutionsfor other Rrandtl numbers are discussed later.

An alternate system of equations is described in appendix C!.

(M)

Relation between Y and ~. - For x constant, the relation be-
tween y and q is, from equation (3),

rJ ~
l“e _

Y 2 Xvw
-# d~

Ow

Substitution of equation (12a) into equation (17] yields

.

c

For a =1, equations (15) and (16) canbe substituted into equation (L8)
with the following result:

.
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%Tl

Y d-{l“e _
2 Xuw

—(r-q)+
%+:-1 —-

%

[

*M2 i
e u=

~
(f - q) + f(l - f’) + f“(o) - f“ (19)

If the WSJJ is insulated, equation (19) becomes

(20)

Equations (18) to (20) sre useful for obtaining velocity and temperature
profiles in terms of y rather than q.

()
u

Perturbation Solution for ~ - 1 <<l
e

If the shock wave is weak, (~/”e) - 1 is small,
analysis in terms of this parameter is possible. Let

Substituting equation (21a) into equations [6) and (7)
ficients of [(u#~) -1 ~ and [(~/ue) - 1]~ ~e~,

and a perturbation

(21b)

(22.C)

and equating coef-
respectively,



‘o’” +fofo” ‘0
fo(o) )=0; f~(o) =f&) =1

fl’‘‘ + f~l” + flfo” = o

fJo) = 0) f4(0) ‘1; fi(-) ‘O
}

Integration of equations (22) and (23) gives

‘o=~ 1

‘1 = ,etic(*)+ q. --(91]

NM!A TN 3401

(22) -

(23)

(24)

}

(25)

J

.

.

Substituting the preceding solution f~ f into eqpations (10) and (n]

()

%
and equating coefficients of ~ - 1 @eld

e

2
4 a e-7ro” + qr~ ~=-

r~(0) =ro(m) =0
}.

‘o
“+qs~=o

so(o)= 1; so(-)=0
)
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Integration of
.

equation (26) yields (from results of ref. 8)

The integrsl of equation (27) is

s=etic(j?)+o~-j

From equations (28) end (29),

(29)

(30)

(31)

9 where r(0) is the recovery factor and s’(O) is used to calculate heat
transfer. Equations (22) to (31) (neglecting the higher-order terms)
a ply if an infinite plate is started, impulsively, with velocity

fl~/ue) -11. Thelatter, often termed the “Reyleigh problem,” has been

much discussed. The zero-order solution indicated by equations (28) and
(30) was obtained in reference 8 in a study of the aerodynamic heating
associated with the Rayleigh problem.

In reference 1, the boundary layer behind a shock wave advancing into
a stationary fluid was estimated by analogy with the Rayleigh problem.
The work of the present section shows that this approach is exact for weak
shocks.

M.merical Solution

For other than weak shock waves, a numerical solution of equations
(6), (10), and (U) is required. This was obtained by Lynn U. Albers with
the use of an IF&fcard-programed electronic csd.culator. The integration
technique is described in appendix B of reference 9. The results, correct
to four decimal places, are tabulated in table 1. Values of f, f’, and
f II are given for ~/~ of 1.5, 2, 3, 4, 5, and 6, while values of r,
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r’, s, s’,
J

l-l
0

r dq, and
f o

~ s dq s.represented for ~/ue of 2, 4,

and 6 (with u = 0.72). The data of table I plus the perturbation solu-
.

tion of the previous section define solutions covering the range from very
week shocks to very strong shocks.

RESULTS AND DISCUSSION

In the steady coordinate system, the boundsry-layer similarityperem-

rJ

1% y Tw
eteris ~= -—

2V* o ~ ** Transforming to the unsteady coordinate

system according to the relation x = ~ + ~t and considering station

z= O gives q = ~~[% dy. Thus, the boundary layer

behind the shock wave has features of a ILasius type flow or a Rayleigh
type flow, depending on whether the observer is stationerywith respect
to the shock wave, or wall, respectively.

The Rayleigh viewpoint is used herein to correlate ~d discuss the ●

numerical data. That is, attention is fixed at station x = 0, and the
boundary-l~er development for t >0 is considered. The Velmity which
characterizes the boundary-layer development is Uw-u . Shnilarly, a \

characteristic length is (~ - ~) t, which is the di%ance a psrticle in

the free stresm moves relative to the well in the t. T& form of the
Reynolds number used herein can then be defined as

Boundsxy-Layer -of iles

The parameter [(~/ue) - f‘]/ [(~/~e) - 1] v-es from a v~ue of
zero at the wsJl to a value of 1 at the edge of the boundary layer. A
boundary-layer thickness 5 may be defined as the value of y correspond-
ing tO [ (~/ue) - f ‘]/[(~/Ue) - 1] .0.99. VdWS of the bo~~.~r-

thickness perameter 8/@E have been computed assuming y = 1.4 and
—

an insulated plate, for u of 0.72 end 1.0 (using e s. (18) a (20)).
.

These are tabulated in table II. 7It iS seen that (5 ~)i increases

with increasing ~/~. As expected, the values for a . 1 are greater -

than those for a = 0.72 (for uw/ue # 1). This is due to the fact
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the larger recovery factor of the former leads to higher temperatures
the wall and therefore a lsrger vslue of y corresponding to a -

given q.

Velocity profiles for u.Jue of 1 (limiting case of very weak

chocks) and 6 are plotted in figure 2. Curves for intermediate values
of uJue lie smoothly between the curves in the figure. No marked

departure from an error function type velocity profile is indicated.

Skin l?rictionand Eeat Transfer

The shear stress at the wall is given by

()~w=h?$w

Because of the coordinate system

= ~ue

r

*‘* f“(0}
w

used, %W is negative.

used aa a reference velocity, a positive-local friction

be defined as ‘f I
‘ -~w +%(% - ue)2. Then, using the

as definedby equation (32),

If (~ - Ue) is
coefficient can

Reynolds number

(33)

Values of cffi are tabulated in table II. These vary from the Ray-

leighvslue of 1.128 at ~/ue = 1 to 0.935 at ~/ue = 6. ~ corre-

P spending value of Cf‘@ for incompressible flow past a semi-infinite

plate @l.asius problem) is 0.664.

The heat transferred
per unit time, is

into the fluid from a unit area of the wall,

=-
W @ * @w - %,i) s‘(0) (34)

Defining a heat-transfer coefficient h by h = (~ - ~,i)/q and a

Nusselt number by the relation Nu = h(~ - Ue) t/kw permits the Nusselt

number to be written as
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Nu=sQ.L@

r1 ‘w
5<

The relation between skin ffiction and heat trsnsfer can be expressed in
terms of a Reynolds analo~ parameter @cfRe/Nu. The factor W i& —.

included, since, for ~/ue = 1, ~ c@e/Nu is a constant. For a = 1,

the perameter equals 2 at all values of ~/~; while for a = 0.72, the

psxsmeter increases from 2 at ~j~ = 1 to 2.07 at ~/~ = 6.

The recovery factor for ~/~ = 1 is given by equation (30). Eval-u-
ating this equation for a =0.72 gives r(0) = 0.885. The recovery
factor for a = 0.72 increases with increasing ~/~ to a value of 0.920
at ~/ue = 6. These compsxe with the value 0.845 for flow past a semi-

infinite plate at u = 0.72.

!Rms, for the range of uJue investigated, the nmerical results
for skin friction, heat transfer, and recovery factor (in terms of the
parameters defined herein) depart relatively less from Rayleigh (~/ue = 1)

values than from the Blasius values for equivalent flows past a semi-
*

infinite flat plate.

CONCLUDING REMARKS

The hminar boundary layer behind a shock

k

wave advancing into a sta-
tionary fluid, boundedby a wall, has been determined. Various boundsry-
layer parameters have been tabulated for several shock strengths.

With increasing Reynolds numbers, the laminar boundary layer behind
the shock wilJ become unstable, and transition to turbulent flow will
ultimately occur. A theoretical study of the stability of this lamhar
boundary lqyer would be of interest. Shock-tube experiments tight protide
criteria defining the transition to turbulent boundary-lsyer flow as well
as the chsracteristies of the turbulent bou- layer. At present, little
is Iomwn about the structure of such turbulent boundary lqwrs, and it is
felt that some experiment&1 data should be avsi.lablebefore an analytical
study is attempted.

Lewis Flight Propulsion Laboratory
National Adtisory Committee for Aeronautics

Cleveland, Ohio, December 10, 1954

.

.
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APPENDIX A

SYMBOLS

The fol.lowingsymbols are used in this report:

a

Cf

%

erf(x)

erfc(x)

f

h

k

M

%

Nu

P

~

R

Re

r

r(0)

s

T

t

U,v

speed of sound

/rlocal skin-friction coefficient, -%w 12~ Pw(Uw - Ue)

specific heat at mnstsnt pressure

s
error function, (2/@l ~x & dy

complementsry error function, 1 - erf(x)

function of q definei by eq. (4)

heat-transfer meff icient, (~ - ~, i)/q

thermal condutiivity

Mach nuder

uJae

Nusselt number, h(~ - ue)t/~

pressure

local rate of heat transfer

gas constant

Reynolds number, (~ - ue)2tfiw

function defined by eq. (10)

recovery factor

function definedby eq. (n)

static temperature (abs)

time

velocities parallel to x and y coordinates, respectively
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velocities psrallel to X and ~ coordinates,respectively

velocity of shock wave relative to wall

coordinatesparallel to and normal to waJJ, respectively, and
moving with shock”’wave(fig. l(b))

coordinatesparallel to and normal to wall, respectively, end
stationarywith respect to wall (fig. 1(a))

ratio of specific heats

value of y for which (uJue - u/ue)/(uJue - 1) = 0.99
(i.e., boundary-layer thickness)

variable defined by eq. (3)

value of q at y = 5

coefficientof viscosity

kinematic viscosity

mass density

Prandtl ntier, p~/k

local sheering stress at wall

stream function

Subscripts:

b undisturbed flow in front of shock wave (append5x B)

e flow external to boundsxy layer

i insulated-wallproblem

w conditions at wall (y = ~ = O)

.

.

●

*
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APPENDIX B

SHOCK RXIATIONS
-.

For convenience, some useful shock-wave relations sxe noted herein:

Consider flow in
undisturbed flow
behind the shock

% = ~j so that

a steady coordinate system. Let subscript b designate
in frent of the shock wave; and s~script e, the flow
wave and external to the boundsry layer.
~ = u~ab = uJab ■ Then,

Note that

_ * (Y+l)g%

‘e (T-l)% + 2 )
(Bl)

(B2)

(B3)
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APPENDIX c
.

ALTERNATE FORMULATION OF BOUNDARY-LAYER F!ROBIJ!M

The transformationbased on equation (3) leads to a ~ystem of equa-
tions identical to that which arises in boundary-layer studies of the
flow past a semi-infiniteflat plate, except for the non-zero velocity
boundary condition at the wall. This sytem was convenient for numerical
computation, since a variety of flat-plate boundary-layer problems had
previously been solved at the NAC!ALewis laboratory, and the card-
progrsmning for the IBM electronic calculatorwas already established.

An alternate system can be obtained by normalizing the momentum-
equation boundary conditions. That is, the parameter ~/ue appesrs in

the clifferential equation rather than in the boundary conditions. Such
a system leads
problem aad is

Define ~

more didectly to the correct.physical
described by the following equations.

and g(~) according to the relations

%(!2m +&+)—-
‘e

parameters of the

(cl) “-
.

(C2)

Using equations (Cl) and (C2), equations (6), (7), (10), and (11) become

u‘(0)= %g=()= 0; (‘)%g..=~J
(C3)

r(a) =
()%~=o”o J
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)+0. (C5)

s(o) = 1; s(m) = ~ J

Note that, for 5 = 0, ~ = 1/A/~, which is the correct parsmet~ for

the Rayleigh problem.
/~so ~/d!= [(~/*e) -f’] [(~/ue) - 1], w~ch

is a normalized velocity. Finally, the reduction of the system to a
Rayleigh problem, for ~/ue = 1, is more apparent frm equations (C3)

to (C5) than from equations (6) to (11).
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TABLE II. - SKEN-FRICTION AND HEAT-TRA.NSFERCOEFFICIENTS

= 1.IJ

Prandt1 number, a
0.72 0

Uw ucfRe
cf.-@ (8/~)~ 4 ~. ‘“*

< (%A@i Nu

1.0 1.128 3.64 2.0 3.64 2.0

1.5 1.057 ---- ---- 4.33 2.0

2.0 1.019 4.55 2.032 4.91 2.0

3.0 .979 ---- ----- 5.91 2.0

4.0 .958 5.86 2.060 6.80 2.0

5.0 .944 ---- ----- 7.63 2.0

6.0 .935 6.94 2.074 8.42 2.CI
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Figure 1, - Coordinate systems used to study boundary layer behind shock advencing Into

stationary fluid.
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